
A Weight-Order-Based Lattice Algorithm for Mining Maximal Weighted Frequent
Patterns over a Data Stream Sliding Window

Ye-In Chang, Chia-En Li*, Tzung-Je Chou and Ching-Yi Yen

Department of Computer Science and Engineering National Sun Yat-sen University

70 Lienhai Rd., Kaohsiung, Taiwan
+886-7-5254350, lice@db.cse.nsysu.edu.tw

Abstract

The weighted maximal frequent pattern concerning both the

importance and the count is the pattern which is not the subset
of any other pattern and the weighted support is large enough.
To mine such a pattern based on the sliding window model, the
WMFP-SW algorithm was proposed. However, when the new
transaction comes, it always has to reconstruct its FP-tree. To
solve the problem, we propose the WOB Lattice algorithm and
our algorithm provides better performance than the WMFP-SW
algorithm.

Key words: Sliding Window Model, Lattice, Weighted
Maximal Frequent Itemset

Introduction

Data mining is the process of finding hidden and useful

knowledge form the large databases. Moreover, data mining
has been used in many areas, including geographic [1], network
[2], and traffic data [3]. Recently, finding frequent patterns has
become one of the most famous ways on data mining. The most
important process in frequent pattern mining is mining
association rules [4]. By using association rules, the computer
can discover new patterns from datasets. However, items have
different importance in the real world. Therefore, we have to
consider the importance and the count of the items at the same
time. Because of this reason, the algorithm of mining
association rules cannot be followed in the weight
environments and the Apriori algorithm [5] also cannot be used
in weighted frequent pattern mining. On the other hand,
frequent pattern mining has two types of deformations,
maximal frequent pattern mining [6] and closed frequent
pattern mining [7, 8]. Moreover, weighted frequent pattern
mining has two types of deformations, weighted maximal
frequent pattern mining [9, 10] and weighted closed frequent
pattern mining [11]. Besides, the concept of a data stream,
which may have the infinite transactions, is more appropriate
than a data set for many recent applications, for example,
sensor network data analysis and web click streams. By nature,
a stored data set is appropriate when significant portions of the
data are queried again and again, and updates are small or
relatively infrequent. In contrast, a data stream is appropriate
when the data is changing constantly, and it is either
unnecessary or impractical to operate on large portions of the
data many times.

In [12], Lee et al. proposed the Weighted Maximal Frequent
Pattern mining over data streams based on the Sliding Window
model (WMFP-SW) algorithm for mining maximal weighted
frequent pattern in data streams within a transaction sliding

window. The WMFP-SW algorithm uses the WMFP-FP-tree to
store the transactions in the present window and reconstruct the
WMFP-FP-tree by items count descending order. While
window slides, this algorithm removes the old transactions,
insert the new transactions and reconstruct again. To decrease
the number of candidates, they find the MaxW, the largest
weight of the item in the itemset, and calculate minsup/MaxW.
If the count of the itemset is smaller than minsup/MaxW, it is
not a weighted frequent pattern. Finally, they traverse the
single-pass to find maximal weighted frequent patterns. It can
find weighted maximal frequent pattern based on the sliding
window model easily.

The rest of thesis is organized as follows. In section 2, we
give a brief description of the WMFP-SW algorithm. In Section
3, we present the proposed Weighted-Order-Based Lattice
algorithm (WOB) algorithm. In Section 4, we present the
performance study of our algorithm and make a comparison
between our algorithm and the WMFP-SW algorithm. Finally,
Section 5 gives the conclusion.

Related Work

Weighted frequent pattern mining is a very important

problem in the real databases. Ryu et al. propose the
WMFP-SW algorithm [12] to mine weighted maximal frequent
patterns (WMFPs) on the sliding window. Their WMFP-SW
algorithm performs mining operations based on a tree structure,
and accordingly, they need tree structures suitable for finding
WMFPs over sliding window-based data streams. Their
WMFP-SW algorithm [12] performs mining operations based
on theWMFP-SW-tree and the WMFP-SW-array. This tree
structure is similar to the FP-tree [13], but the WMFP-SW-tree
has additional weight data and is constructed with only one
scan. The WMFP-SW-array stores a part of node data in the
WMFP-SW-tree. Because weighted candidates do not satisfy
the anti-monotone property [14] in general, weighted
infrequent pattern could be a subset of a weighted frequent
pattern [15]. As a result, incorrect pruning operations by the
weights can cause weighted pattern losses. To solve this
problem and perform efficient pruning procedures, they define
a pruning condition applied in the sliding window model,
named MaxW. If any single-path is generated in the process of
the mining steps, they would calculate WSup, the weighted
support, for the patterns. If the WSup value is not larger than the
threshold, they would find other WMFPs which are the subsets
of the single-path. For example, Figure 1 is an sliding window
data stream, and sliding window W1 has been scanned as shown
in Figure 2-(a). Then, the tree has to be reconstructed by the
descending count order in Figure 2-(b).

A Weight-Order-Based Lattice Algorithm

A. Data Structure

In our algorithm, we propose the weight-order-based lattice
structure and the bit-pattern representation of items based on
the sliding window model. We use Transaction Database TD1
as shown in Figure 3 to illustrate our idea. Because we need
weight descending order, we have to sort the items, as shown in
Figure 4-(a), by using the weighted order, as shown in Figure
4-(b). This lattice structure has two advantages. First, using the
weight-order-based lattice structure, the relationship between
the new transaction and present transactions can be easily
understood. Second, we can update the support of the
transaction efficiently.

The weight-order-based lattice structure contains the root,
nodes, and child-link. An example is shown in Figure 5. The
root has no information. It is a start point. When a new
transaction is inserted, we sort the transaction by weight

descending order and search the weight-order-based lattice
structure from the root. Each node records some information:
• Bit-Pattern: It represents an itemset.
• Sup: It represents the support of the itemset.

The child-link points to the subset node. With the
child-link, we can check the relationship between nodes and
insert the node into the weight-order-based lattice structure
efficiently. Moreover, we can increase the support of the
related nodes easily.

B. Our Proposed Algorithm

In this section, we first define some basic definitions and
notations and then discuss how to use these techniques to find
and represent the weighted maximal frequent itemsets and
organize the weighted maximal frequent itemsets in a lattice.
Our algorithm has 4 main steps.
1. Transform the itemset to the bit pattern.
2. Check the relation between the new transaction and the old
transaction.
3. Use the pruning strategy to prune the patterns.
4. Examine which transaction is the weighted maximal frequent
itemsets.

In the first step, we use the bit-pattern representation to store
the transaction. We will use weighted descending order to
transform the transaction to the representation of bit-patterns.
For each transaction T in the current window, a bit-pattern of
transaction T is denoted as Bit(T), and the length of bit-pattern
is the kind of items in total database. If item X is in this
transaction and item X is the i-th place in the weight descending
order, the i-th bit of Bit(T) is set to 1; otherwise, it is set to 0.
For instance, item D is the third item in Figure 4-(b). Because
of this reason, the bit-pattern of the transaction which has item
D will be set to 1 in its third place.

In the second step, we check the relation between the new
transaction and the old transaction. There are five cases in
inserting itemsets into the lattice structure. The flowchart is
shown in Figure 6. When the current window becomes full, we
will delete the two oldest transactions and insert two new
transactions.

In mining the maximal frequent itemsets from the data

Fig. 4 Sorting the items by weight order: (a) before sorting; (b) after
sorting.

Fig. 1 An example of Transaction Database TDB2 in the
sliding-window model

Fig. 5 The lattice of window W1

Fig. 2 WMFP-SW-tree for sliding window W1 : (a) before
reconstructing operation; (b) after reconstructing operation [14].

Fig. 3 Transaction Database TD1 without sorting

stream, each new transaction must be discovered the related
relations (equivalent, superset, subset, intersection, empty) of
the present transactions. In order to check the relation
efficiency, we use the bit-pattern to represent the itemset. The
maximal length of the bit-length is the number of distinct items.
When the item appears in the transaction, we set the related bit
to 1 according to the weight descending order. In Figure 3, Tid2
is {C, D}, and it would become [D, C] in the
weight-order-based lattice structure. We set the third and fifth
positions to 1. The bit-pattern is denoted as [00101]. So, the
bit-pattern of window W1 is shown in Table I. For every new
transaction which is inserting, we set the support to be 1. After
checking the new transaction with each present transactions,
the support may be increased and new itemsets may be created.
In the next section, we introduce this case in details.

In this section, first, we will build an Appearing Table

AppearT to store the count of the pattern in lattice. After we
build the Appearing Table AppearT, we will use two pruning
strategies: global maximal weight (GMAX_W) pruning strategy
and local maximal weight (LMAX_W) pruning strategy. Note
that, GMAX_W means the largest weight of the items among all

of transactions and LMAX_W means the largest weight of the
items among items in a certain transaction. In the global
pruning strategy, we make use of GMAX_W, the maximum
weight of item X among items appearing in all of transactions.
For any pattern Y, the average weight of pattern Y, Weight(Y)
must be smaller than or equal to GMAX_W. Let Count(Y)
denote the count of pattern Y. Therefore, if Count(Y) *
GMAX_W is smaller than the threshold, pattern Y will not be the
result. That is, pattern Y can be pruned. In other words, if
Count(Y) < threshold/GMAX_W, pattern Y can be pruned. In
our algorithm, Count(Y) = I, where AP(I), the I’th entry of
Appearing Pattern table, records every pattern Y with count = I.
Therefore, we prune those patterns stored in AP(I), if I is
smaller than threshold/GMAX_W. Note that I is an integer,
while threshold/GMAX_W is a real number. In order to check
whether the subset X of a pattern Y is frequent or not, we must
record the count of subset X. Here, similar to the concept of the
closed set, we only record the subset X which has different
count to pattern Y in Appearing Table AppearT. Note that the
definition of a closed set is that the set whose supersets are not
frequent or whose count is larger than the count of its superset.
Moreover, AP(I) records patterns with count = I in the current
window. Basically, only subset X which has count lager than
that of pattern Y will be recorded in AppearT.

In the sliding window model, we have to delete the old
transactions and insert the new transactions when the window
slides. In this section, we describe how to delete the old
transaction from the lattice structure and the current window.
Step 1: We remove the two old set transaction from the lattice
structure. When a transaction is out of the current window, it
should be deleted from the lattice structure. In the lattice
structure, we need to traverse the nodes which are relevant to
the deleted transaction. If a node is deleted from the lattice
structure, a subset of the deleted node will be influenced. The
reason is that the subset lattice node could be created by two
itemsets. Step 2: If the itemset or its subsets which is going to
be deleted is already in WMFP-table, then the support of the
itemset in WMFP-table is decreased. However, we will not
calculate the support of the itemset. Because it may be inserted
again in the next two transactions. For example, a WMFP [B,
D] will be decreased, since T1 [B, E, D] is deleted and [B, D]
will be less than threshold. However, when T5 [B, D, A, C] is
inserted into the lattice structure, [B, D] become the WMFP
again. When the fifth transaction T5 [B, D, A, C] and the sixth
transaction T6 [E, D] come, the current window is full. We have
to remove the oldest two transactions from the current window
and insert the new two transactions to the current window. The
first transaction T1 [B, E, D] and the second transaction T2 [D,
C] should be removed from the current window. We remove
Transaction Tid (1) and Tid (2) from Tid set of T1 and T2 and all
of the subsets. Because T1 [B, E, D] has two WMFPs [B, E] and
[B, D], we have to decrease the count of these two WMFPs.

In this section, we will show how to insert transactions
into the lattice structure. We process procedure Insert_T. When
the next transaction T5 [B, D, A, C] comes, Insert_T will call
Function Find_T to check whether the itemset is in the lattice
structure or not. Because of this checking step, we can know
that the transaction T5 [B, D, A, C] is not in the lattice structure.
Then, we will call Procedure CheckCase.

Fig. 6 The flowchart of the algorithm

TABLE I
An example of the data stream mapped to the bit-pattern

Tid Itemset Bit-Pattern
1 B, E, D 11100
2 D, C 00101
3 B, E, D, A, C 11111
4 B 10000

Performance

In this section, we show the results of the real data. Table II
shows the comparison of the processing time of the both
algorithms for the Retail dataset under the change of the
threshold. From this table, we show that the WOB-Lattice
algorithm is faster than the WMFP-SW algorithm. We observe
that the processing time of the WMFP-SW algorithm and the
WOB-Lattice algorithm decreases, when the threshold
increases. Because when the threshold increases, the number of
the WMFP decreases. Figure 7 shows the comparison of
processing time of the both algorithms for the Mushroom
dataset under the change of the threshold. The detailed results
are shown in Table III. From this table, we show that the
WOB-Lattice algorithm is faster than the WMFP-SW algorithm.
We observe that the processing time of the WMFP-SW
algorithm and the WOB-Lattice algorithm decreases, when the
threshold increases. Because when the threshold increases, the
number of the WMFP decreases.

Conclusion

In this paper, we have proposed a WOB Lattice algorithm
which can avoid the time of reconstructing the tree, while the
window slides. In our algorithm, we only need to delete the old
transaction and join the new transaction, instead of
reconstructing the whole tree shown as in WMFP-SW algorithm.
Besides, we proposed GMAXW pruning rule to decrease the
time of mining maximal weight pruning step.

Acknowledgments

This research was supported in part by the Ministry of
Science and Technology of Republic of China under Grant No.
MOST-106-2221-E-110-079.

References

[1] V. Bogorny, et. al., “Mining Maximal Generalized Frequent

Geographic Patterns with Knowledge Constraints,” Proc. of the
6th Int. Conf. on Data Min., pp. 813-817, 2006.

[2] G. Fang, et al., “Network Traffic Monitoring Based on Mining
Frequent Patterns,” Proc. of the 6th Int. Conf. on Fuzzy Syst. and
Knowl. Discov., Vol. 7, pp. 571-575, 2009.

[3] W. Liu, et al., “Discovering Spatio-Temporal Causal Interactions
in Traffic Data Streams,” Proc. of the 17th ACM SIGKDD Int.
Conf. on Knowl. Discov. and Data Min., pp. 1010-1018, 2011.

[4] R. Agrawal, et al., “Mining Association Rules Between Sets of
Items in Large Databases,” Proc. of the 1993 ACM SIGMOD Int.
Conf. on Manag. of Data, Vol. 22, No. 2, pp. 207-216, June
1993.

[5] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. of the 20th Int. Conf. Very Large Data
Bases, VLDB, Vol. 1215, pp. 487-499, 1994.

[6] D. Burdick, et al., “MAFIA: A Maximal Frequent Itemset
Algorithm for Transactional Databases,” Proc. of the 17th Int.
Conf. on Data Eng., pp. 443-452, 2001.

[7] L. Chang, et al., “Efficient Algorithms for Incremental
Maintenance of Closed Sequential Patterns in Large Databases,”
Data Knowl. Eng., Vol. 68, No. 1, pp. 68-106, Jan. 2009.

[8] Y. Chen, et al., “A New Approach for Maximal Frequent
Sequential Patterns Mining over Data Streams,” Int. J. of Digit.
Content Technol. and Its Appl., Vol. 5, No. 6, June 2011.

[9] B. Vo, et al., “A New Method for Mining Frequent Weighted
Itemsets based on WIT-trees,” Expert Syst. with Appl., Vol. 40,
No. 4, pp. 1256-1264, March 2013.

[10] J. Wang and Y. Zeng, “DSWFP: Efficient Mining of Weighted
Frequent Pattern over Data Streams,” Proc. of the 8th Int. Conf.
on Fuzzy Syst. and Knowl. Discov. (FSKD), Vol. 2, pp. 942-946,
2011.

[11] U. Yun, “Mining Lossless Closed Frequent Patterns with Weight
Constraints,” Knowl.-Based Syst. Vol. 20, No. 1, pp. 86-97, Feb.
2007.

[12] G. Lee, et al., “Sliding Window Based Weighted Maximal
Frequent Pattern Mining over Data Streams,” Expert Syst. with
Appl., Vol. 41, No. 2, pp. 694-708, Feb. 2014.

[13] J. Han, et al., “Mining Frequent Patterns without Candidate
Generation: A Frequent-Pattern Tree Approach,” Data Min. and
Knowl. Discov., Vol. 8, No. 1, pp. 53–87, Jan. 2004.

[14] R. T. Ng, et al., “Exploratory Mining and Pruning Optimizations
of Constrained Associations Rules,” ACM SIGMOD Record,
Vol. 27, pp. 13-24, 1998.

[15] U. Yun, et al., “An Efficient Mining Algorithm for Maximal
Weighted Frequent Patterns in Transactional Databases,”
Knowl.-Based Syst., Vol. 33, No. 1, pp. 53-64, Sept. 2012.

Fig. 7 A comparison of the processing time of the Mushroom dataset
under the change of the threshold

TABLE II
A comparison of processing time for the Retail dataset under the

change of the threshold

Minimum

support
WMFP-SW (msec) WOB-Lattice (msec)

0.66 2555144 71143
0.68 1000627 60832
0.70 472767 45037
0.72 213852 25147
0.74 100705 11474
0.76 50280 4600
0.78 31624 2756
0.80 21143 2043

TABLE III
The processing time of the Mushroom dataset under the change of the

threshold

Minimum

support
WMFP-SW (msec) WOB-Lattice (msec)

0.6 150878 800
0.7 206722 1112
0.8 301995 4520
0.9 244965 3045
1.0 68163 2341

