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Abstract 

 
The weighted maximal frequent pattern concerning both the 

importance and the count is the pattern which is not the subset 
of any other pattern and the weighted support is large enough. 
To mine such a pattern based on the sliding window model, the 
WMFP-SW algorithm was proposed. However, when the new 
transaction comes, it always has to reconstruct its FP-tree. To 
solve the problem,  we propose the WOB Lattice algorithm and 
our algorithm provides better performance than the WMFP-SW 
algorithm. 
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Introduction 

     
Data mining is the process of finding hidden and useful 

knowledge form the large databases. Moreover, data mining 
has been used in many areas, including geographic [1], network 
[2], and traffic data [3]. Recently, finding frequent patterns has 
become one of the most famous ways on data mining. The most 
important process in frequent pattern mining is mining 
association rules [4]. By using association rules, the computer 
can discover new patterns from datasets. However, items have 
different importance in the real world. Therefore, we have to 
consider the importance and the count of the items at the same 
time. Because of this reason, the algorithm of mining 
association rules cannot be followed in the weight 
environments and the Apriori algorithm [5] also cannot be used 
in weighted frequent pattern mining. On the other hand, 
frequent pattern mining has two types of deformations, 
maximal frequent pattern mining [6] and closed frequent 
pattern mining [7, 8]. Moreover, weighted frequent pattern 
mining has two types of deformations, weighted maximal 
frequent pattern mining [9, 10] and weighted closed frequent 
pattern mining [11]. Besides, the concept of a data stream, 
which may have the infinite transactions, is more appropriate 
than a data set for many recent applications, for example, 
sensor network data analysis and web click streams. By nature, 
a stored data set is appropriate when significant portions of the 
data are queried again and again, and updates are small or 
relatively infrequent. In contrast, a data stream is appropriate 
when the data is changing constantly, and it is either 
unnecessary or impractical to operate on large portions of the 
data many times. 

In [12], Lee et al. proposed the Weighted Maximal Frequent 
Pattern mining over data streams based on the Sliding Window 
model (WMFP-SW) algorithm for mining maximal weighted 
frequent pattern in data streams within a transaction sliding 

window. The WMFP-SW algorithm uses the WMFP-FP-tree to 
store the transactions in the present window and reconstruct the 
WMFP-FP-tree by items count descending order. While 
window slides, this algorithm removes the old transactions, 
insert the new transactions and reconstruct again. To decrease 
the number of candidates, they find the MaxW, the largest 
weight of the item in the itemset, and calculate minsup/MaxW. 
If the count of the itemset is smaller than minsup/MaxW, it is 
not a weighted frequent pattern. Finally, they traverse the 
single-pass to find maximal weighted frequent patterns. It can 
find weighted maximal frequent pattern based on the sliding 
window model easily. 

The rest of thesis is organized as follows. In section 2, we 
give a brief description of the WMFP-SW algorithm. In Section 
3, we present the proposed Weighted-Order-Based Lattice 
algorithm (WOB) algorithm. In Section 4, we present the 
performance study of our algorithm and make a comparison 
between our algorithm and the WMFP-SW algorithm. Finally, 
Section 5 gives the conclusion. 

 
Related Work 

 
Weighted frequent pattern mining is a very important 

problem in the real databases. Ryu et al. propose the 
WMFP-SW algorithm [12] to mine weighted maximal frequent 
patterns (WMFPs) on the sliding window. Their WMFP-SW 
algorithm performs mining operations based on a tree structure, 
and accordingly, they need tree structures suitable for finding 
WMFPs over sliding window-based data streams. Their 
WMFP-SW algorithm [12] performs mining operations based 
on theWMFP-SW-tree and the WMFP-SW-array. This tree 
structure is similar to the FP-tree [13], but the WMFP-SW-tree 
has additional weight data and is constructed with only one 
scan. The WMFP-SW-array stores a part of node data in the 
WMFP-SW-tree. Because weighted candidates do not satisfy 
the anti-monotone property [14] in general, weighted 
infrequent pattern could be a subset of a weighted frequent 
pattern [15]. As a result, incorrect pruning operations by the 
weights can cause weighted pattern losses. To solve this 
problem and perform efficient pruning procedures, they define 
a pruning condition applied in the sliding window model, 
named MaxW. If any single-path is generated in the process of 
the mining steps, they would calculate WSup, the weighted 
support, for the patterns. If the WSup value is not larger than the 
threshold, they would find other WMFPs which are the subsets 
of the single-path. For example, Figure 1 is an sliding window 
data stream, and sliding window W1 has been scanned as shown 
in Figure 2-(a). Then, the tree has to be reconstructed by the 
descending count order in Figure 2-(b).  

  



 

 
A Weight-Order-Based Lattice Algorithm 

 
A. Data Structure 

In our algorithm, we propose the weight-order-based lattice 
structure and the bit-pattern representation of items based on 
the sliding window model. We use Transaction Database TD1 
as shown in Figure 3 to illustrate our idea. Because we need 
weight descending order, we have to sort the items, as shown in 
Figure 4-(a), by using the weighted order, as shown in Figure 
4-(b). This lattice structure has two advantages. First, using the 
weight-order-based lattice structure, the relationship between 
the new transaction and present transactions can be easily 
understood. Second, we can update the support of the 
transaction efficiently. 

The weight-order-based lattice structure contains the root, 
nodes, and child-link. An example is shown in Figure 5. The 
root has no information. It is a start point. When a new 
transaction is inserted, we sort the transaction by weight 

descending order and search the weight-order-based lattice 
structure from the root. Each node records some information: 
•  Bit-Pattern: It represents an itemset. 
•  Sup: It represents the support of the itemset. 

The child-link points to the subset node. With the 
child-link, we can check the relationship between nodes and 
insert the node into the weight-order-based lattice structure 
efficiently. Moreover, we can increase the support of the 
related nodes easily. 

 
B. Our Proposed Algorithm 

In this section, we first define some basic definitions and 
notations and then discuss how to use these techniques to find 
and represent the weighted maximal frequent itemsets and 
organize the weighted maximal frequent itemsets in a lattice. 
Our algorithm has 4 main steps. 
1. Transform the itemset to the bit pattern. 
2. Check the relation between the new transaction and the old 
transaction. 
3. Use the pruning strategy to prune the patterns. 
4. Examine which transaction is the weighted maximal frequent 
itemsets. 

In the first step, we use the bit-pattern representation to store 
the transaction. We will use weighted descending order to 
transform the transaction to the representation of bit-patterns. 
For each transaction T in the current window, a bit-pattern of 
transaction T is denoted as Bit(T), and the length of bit-pattern 
is the kind of items in total database. If item X is in this 
transaction and item X is the i-th place in the weight descending 
order, the i-th bit of Bit(T) is set to 1; otherwise, it is set to 0. 
For instance, item D is the third item in Figure 4-(b). Because 
of this reason, the bit-pattern of the transaction which has item 
D will be set to 1 in its third place.  

In the second step, we check the relation between the new 
transaction and the old transaction. There are five cases in 
inserting itemsets into the lattice structure. The flowchart is 
shown in Figure 6. When the current window becomes full, we 
will delete the two oldest transactions and insert two new 
transactions. 

In mining the maximal frequent itemsets from the data 

 
Fig. 4 Sorting the items by weight order: (a) before sorting; (b) after 
sorting. 

 
Fig. 1 An example of Transaction Database TDB2 in the 
sliding-window model 

 
Fig. 5 The lattice of window W1 

 
Fig. 2 WMFP-SW-tree for sliding window W1 : (a) before 
reconstructing operation; (b) after reconstructing operation [14]. 

 
Fig. 3 Transaction Database TD1 without sorting 



stream, each new transaction must be discovered the related 
relations (equivalent, superset, subset, intersection, empty) of 
the present transactions. In order to check the relation 
efficiency, we use the bit-pattern to represent the itemset. The 
maximal length of the bit-length is the number of distinct items. 
When the item appears in the transaction, we set the related bit 
to 1 according to the weight descending order. In Figure 3, Tid2 
is {C, D}, and it would become [D, C] in the 
weight-order-based lattice structure. We set the third and fifth 
positions to 1. The bit-pattern is denoted as [00101]. So, the 
bit-pattern of window W1 is shown in Table I. For every new 
transaction which is inserting, we set the support to be 1. After 
checking the new transaction with each present transactions, 
the support may be increased and new itemsets may be created. 
In the next section, we introduce this case in details. 

 
In this section, first, we will build an Appearing Table 

AppearT to store the count of the pattern in lattice. After we 
build the Appearing Table AppearT, we will use two pruning 
strategies: global maximal weight (GMAX_W) pruning strategy 
and local maximal weight (LMAX_W) pruning strategy. Note 
that, GMAX_W means the largest weight of the items among all 

of transactions and LMAX_W means the largest weight of the 
items among items in a certain transaction. In the global 
pruning strategy, we make use of GMAX_W, the maximum 
weight of item X among items appearing in all of transactions. 
For any pattern Y, the average weight of pattern Y, Weight(Y) 
must be smaller than or equal to GMAX_W. Let Count(Y) 
denote the count of pattern Y. Therefore, if Count(Y) * 
GMAX_W is smaller than the threshold, pattern Y will not be the 
result. That is, pattern Y can be pruned. In other words, if 
Count(Y) < threshold/GMAX_W, pattern Y can be pruned. In 
our algorithm, Count(Y) = I, where AP(I), the I’th entry of 
Appearing Pattern table, records every pattern Y with count = I. 
Therefore, we prune those patterns stored in AP(I), if I is 
smaller than threshold/GMAX_W. Note that I is an integer, 
while threshold/GMAX_W is a real number. In order to check 
whether the subset X of a pattern Y is frequent or not, we must 
record the count of subset X. Here, similar to the concept of the 
closed set, we only record the subset X which has different 
count to pattern Y in Appearing Table AppearT. Note that the 
definition of a closed set is that the set whose supersets are not 
frequent or whose count is larger than the count of its superset. 
Moreover, AP(I) records patterns with count = I in the current 
window. Basically, only subset X which has count lager than 
that of pattern Y will be recorded in AppearT. 

In the sliding window model, we have to delete the old 
transactions and insert the new transactions when the window 
slides. In this section, we describe how to delete the old 
transaction from the lattice structure and the current window. 
Step 1: We remove the two old set transaction from the lattice 
structure. When a transaction is out of the current window, it 
should be deleted from the lattice structure. In the lattice 
structure, we need to traverse the nodes which are relevant to 
the deleted transaction. If a node is deleted from the lattice 
structure, a subset of the deleted node will be influenced. The 
reason is that the subset lattice node could be created by two 
itemsets. Step 2: If the itemset or its subsets which is going to 
be deleted is already in WMFP-table, then the support of the 
itemset in WMFP-table is decreased. However, we will not 
calculate the support of the itemset. Because it may be inserted 
again in the next two transactions. For example, a WMFP [B, 
D] will be decreased, since T1 [B, E, D] is deleted and [B, D] 
will be less than threshold. However, when T5 [B, D, A, C] is 
inserted into the lattice structure, [B, D] become the WMFP 
again. When the fifth transaction T5 [B, D, A, C] and the sixth 
transaction T6 [E, D] come, the current window is full. We have 
to remove the oldest two transactions from the current window 
and insert the new two transactions to the current window. The 
first transaction T1 [B, E, D] and the second transaction T2 [D, 
C] should be removed from the current window. We remove 
Transaction Tid (1) and Tid (2) from Tid set of T1 and T2 and all 
of the subsets. Because T1 [B, E, D] has two WMFPs [B, E] and 
[B, D], we have to decrease the count of these two WMFPs. 

In this section, we will show how to insert transactions 
into the lattice structure. We process procedure Insert_T. When 
the next transaction T5 [B, D, A, C] comes, Insert_T will call 
Function Find_T to check whether the itemset is in the lattice 
structure or not. Because of this checking step, we can know 
that the transaction T5 [B, D, A, C] is not in the lattice structure. 
Then, we will call Procedure CheckCase.  

 

 
Fig. 6 The flowchart of the algorithm 

TABLE I 
An example of the data stream mapped to the bit-pattern 

        
Tid Itemset Bit-Pattern 
1 B, E, D 11100 
2 D, C 00101 
3 B, E, D, A, C 11111 
4 B 10000 



Performance 
 

In this section, we show the results of the real data. Table II 
shows the comparison of the processing time of the both 
algorithms for the Retail dataset under the change of the 
threshold. From this table, we show that the WOB-Lattice 
algorithm is faster than the WMFP-SW algorithm. We observe 
that the processing time of the WMFP-SW algorithm and the 
WOB-Lattice algorithm decreases, when the threshold 
increases. Because when the threshold increases, the number of 
the WMFP decreases. Figure 7 shows the comparison of 
processing time of the both algorithms for the Mushroom 
dataset under the change of the threshold. The detailed results 
are shown in Table III. From this table, we show that the 
WOB-Lattice algorithm is faster than the WMFP-SW algorithm. 
We observe that the processing time of the WMFP-SW 
algorithm and the WOB-Lattice algorithm decreases, when the 
threshold increases. Because when the threshold increases, the 
number of the WMFP decreases. 

Conclusion 
 

In this paper, we have proposed a WOB Lattice algorithm 
which can avoid the time of reconstructing the tree, while the 
window slides. In our algorithm, we only need to delete the old 
transaction and join the new transaction, instead of 
reconstructing the whole tree shown as in WMFP-SW algorithm. 
Besides, we proposed GMAXW pruning rule to decrease the 
time of mining maximal weight pruning step. 
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Fig. 7 A comparison of the processing time of the Mushroom dataset 
under the change of the threshold 

TABLE II 
A comparison of processing time for the Retail dataset under the 

change of the threshold 
        
Minimum 

support 
WMFP-SW (msec) WOB-Lattice (msec) 

0.66  2555144 71143 
0.68  1000627 60832 
0.70  472767 45037 
0.72  213852 25147 
0.74  100705 11474 
0.76  50280 4600 
0.78 31624 2756 
0.80  21143 2043 

TABLE III 
The processing time of the Mushroom dataset under the change of the 

threshold 
        
Minimum 

support 
WMFP-SW (msec) WOB-Lattice (msec) 

0.6 150878 800 
0.7 206722 1112 
0.8 301995 4520 
0.9 244965 3045 
1.0 68163 2341 


